## **ANTON** 安東

# The Open ANTON Reservoir Geological Research Institute



## **Basic Features**

## ANTON 安東

The characteristic geological engineering technology is adopted to improve the efficiency of engineering development, help customers accurately hit the target Oil & Gas reservoirs, and maximize the asset value of customers' reservoirs.



## **Characteristic Research Direction**



**ANTON** 安東

## **Service-Oriented Research Institute**



**ANTON** 安東



## **An Open Research Institute**

## **ANTON** 安東

Anton Reservoir Geological Research Institute is striving to build an open platform organization, integrating independent research and development with open collaboration to create a brand new research institute.



## **Service Capability**

## **ANTON 安東**

#### Anton Reservoir Geological Research Institute has the capability to carry out all kinds of project research

#### and engineering operation at the same time, and cooperate with customers for joint development.

- Kazakhstan acidizing & fracturing stimulation service
- Iraq Conceptual design for Hollfield development
- Fracturing and stimulation services for horizontal Wells in Iraq limestone oil fields
- Digital Core application service for X field, Iraq
- ...
- B Oilfield Risk stimulation service in Pakistan
- ...

• ...

 Comprehensive geological study and production support for O oilfield in Chad

- Geological Engineering Design and Tracking
  Implementation of Side DriJling in Ordos Basin.
- FOS visualization monitoring and production profile Monitoring in Changqing Oilfield.

• ...

• Tarim drilling process optimization and technical support

• ...

- Geo-mechanics and borehole stability analysis of BZ key well in Tarim Oilfield
  - FOS visualization monitoring in Daqing gas storage oilfield
  - FOS visualization monitoring in Jilin
  - FOS visualization monitoring in Liaohe
  - Water block removing service in North China Petroleum Bureau of Sinopec
  - General Contracting Services of Geological Engineering in China Petroleum Bureau of Sinopec
  - Integration study of geology and engineering in Y block of Shengli Oilfield
  - Evaluation of shale gas resources in L block of Hunan
  - Implementation plan optimization, realtime tracking and comprehensive effect evaluation of shale gas wells in Changning
  - Shale gas precise fracturing control service in Changning
  - Sweet pot technical service in Shunan
  - Block N in Guizhou CBM development plan

## Characteristic Service-Geological Engineering Technology

## ANTON 安東

#### **Technical Features**

- Real-time iterative fracturing technology, real-time analysis of fracturing process, constantly iteration of geological knowledge, and quick response of "one section, one policy" on site
- Providing technical services which combines geology and engineering at all stages of oil and gas field exploration and development
- ✓ Standardization and software implementation of technical means

#### Case

- ✓ Real-time iterative fracturing technology service for Changning shale gas
- ✓ General contracting services of geological engineering in China Petroleum bureau of Sinopec
- ✓ Water block removing service in North China Petroleum Bureau of Sinopec
- ✓ Optimization and technical support of operation process in PetroChina Tarim oilfield

#### **Application Results**

- Combining geology with engineering tightly, with real-time iteration, improvement of quality and efficiency, thus reform the complex fractures in the well control area, achieve 20.87% increase in output
- ✓ Customed engineering plan based on reservoir geological characteristics
- ✓ Independently software development regarding to drilling and fracturing



Results of Pre-fracturing Simulation and Post-fracturing Matching



Integrated Implementation of On-site Geological Engineering

### **Characteristic Service**-Digital Reservoir Technology

## ANTON 安東

### 1. Digital Core Technology

#### **Technical Features**

- ✓ Non-destructive rock analysis, no sample shape requirement
- Quantification and visualization of rock internal structure
- Quantification and visualization of complex experimental processes such as displacement

#### Case

 Evaluation Experiment of Remaining Oil in Ordos Tight Sandstone and Bohai Bay Old Region

#### **Application Results**

- ✓ Core pore structure evaluation to guide reservoir evaluation
- ✓ After oilfield development, evaluate microscopic pore structure changes and residual oil status in the core microscopic
- Evaluate residual oil status after displacement by different methods to guide development approaches improvement



#### Microscopic Pore Structure Changes





Microscopic Residual Oil Distribution Changes

### **Characteristic Service**-Digital Reservoir Technology

## **ANTON 安東**

### 2. Digital Cuttings Technology

#### **Technical Features**

- ✓ No down hole equipment; use fresh cuttings for digitization
- Accurately provide elements, minerals, physical properties, rock elastic mechanics parameters
- Fast analysis and high data output rate; meet the needs of rapid decision-making onsite

#### Case

✓ Southwest shale gas horizontal well, Ordos tight gas horizontal well

#### **Application Results**

- ✓ Accurately judge formation changes during drilling and assist geosteering
- Provide real-time important parameters such as minerals, porosity, pore-throat structure, Young's modulus, Poisson's ratio and brittleness index to meet quickly reservoirs evaluation
- ✓ Optimize completion, perforation and fracturing plan
- ✓ Cutting samples are easily stored for unlimited analysis



#### Horizontal well heterogeneity evaluation map



#### Comprehensive Map of Digital Cuttings Processing Interpretation

## **ANTON 安東**

### **1. FOS Fracture Monitoring**

#### **Technical Features**

- ✓ Monitoring perforating clusters opening in real-time
- Monitoring fracture width and orientation, identification of layer channeling and interference between wells or stages
- Evaluate fracturing results on-site and optimize the fracturing work plan in realtime

#### Case

✓ Fracture monitoring in Fuling shale gas well

#### **Application Results**

- ✓ Accurately monitoring of the opening/closing of each fracture stage
- ✓ SRV is expanded by adjusting the fracture treatment in real-time
- ✓ Target well produced about 100 km<sup>3</sup>/d more gas than same platform Wells
- Real-time fracture dynamics monitoring, interpretation of micro-seismic data, and accurately display fracture shape were compared and analyzed.



### 2. FOS Production Profile Monitoring

#### **Technical Features**

- The production data obtained by static measurement method, it can get closer results to the real production situation at the bottom of the well
- It could be optimize and guide the production allocation scheme by Multiple production systems monitor the variation and movement law of oil and gas in the well
- ✓ Monitoring integrity of wellbore and reducing wellbore risk
- Without down hole logging tools it is less operation risk and easy to go down the well, the requirement of pipe string drift diameter is low

#### Case

 Southwest shale gas oilfield, Guizhou shale gas oilfield, Chongqing shale gas oilfield, Liaohe gas storage oilfield etc.

#### **Application Results**

- $\checkmark$  Monitor production profile and leaking for each stage.
- ✓ Monitor the well integrity, and identification of leakage point depth.



#### The Final Interpretation Report

## **ANTON 安東**

## **ANTON 安東**

### 3. FOS gas storage well monitor

#### **Technical Features**

- Using static measurement method, the production data obtained is more real, reliable and has reference significance
- Real-time gas movement monitoring to optimize and guide production allocation
- ✓ Monitor well integrity 24/7 to avoid risk
- Long-term monitoring, find out the gas storage huff and puff law, guide later development plan

#### Case

✓ Daqing 4<sup>th</sup> station gas storage, Changqing gas storage, Liaohe gas storage etc.

#### **Application Results**

- Strengthen data monitoring, through the database, AI autonomous analysis of wellbore conditions, timely warning
- Through big data analysis, abnormal events can be found in advance to ensure economic benefits
- ✓ In the future, the FOS technology service gas storage should be the full borehole monitoring of geological integrity, wellbore integrity and surface integrity.

integrity



The Final Interpretation Report in Storage Well

## **ANTON 安東**

### 4. Wide Field Electro-Magnetic Monitoring

#### **Features**

- Monitoring electrical difference caused by fracturing fluid when entering the formation; then to determine frac-fluid location
- Fracture parameters real-time monitoring including length, orientation, height and stimulated area
- ✓ Residual oil monitoring

#### Case

✓ Shale Gas Reservoir Operation Monitoring

#### **Application Results**

- Identify the direction and extension trend of dominant cluster in time; temporary plugging method had been adopted
- ✓ Slows down dominant clusters extension; speeds up the extension of inferior clusters; Overall SRV had been enhanced



Facility Diagram



**Real-time Fractures Monitoring** 

## **ANTON** 安東



Shengli Oilfield Tight oil technology general contracting service: utilized for 50 Wells, increasing test  $\checkmark$ production by 20% compared with conventional fracturing processes

### Oriental wisdom . Global sharing

Reservoir

 $\checkmark$ 

 $\checkmark$ 

 $\checkmark$ 

 $\checkmark$ 

 $\checkmark$ 

 $\checkmark$ 

 $\checkmark$ 

Case

Oil in Iraq

Feature

## **ANTON 安東**

### 2. Nano Fluid Stimulation Technology

#### Feature

- Easy to enter (small size; anti-absorption); able to wash oil out (high efficiency); able to flow back(low capillary pressure, anti- water blocking)
- Using it alone can improve water blocking issue in gas fields old Wells and reduce pressure and increase injection in oil injection Wells
- can be utilized with fracturing fluid to achieve integrated function during fracturing, flooding and producing

#### Case

✓ Shengli Oilfield Tight oil; Ordos Basin tight gas, Xinjiang tight oil and Pakistan tight oil

#### **Application Results**

- ✓ 18% production increase compared with adjacent Wells (Tight oil and gas wells)
- ✓ Flow back ratio drop by 21% when getting hydrocarbon from tight oil & gas reservoir; achieved dialysis displacement and ignition pressure difference deduction
- ✓ Sulige gas field old Wells were injected with nano-fluid to deal with water blocking, and the production recovered back to more than 10,000 m<sup>3</sup>, increasing production by 3-4 times



ANTflo-800 Nano Fluid



## **ANTON 安東**

### 3. Fluid Cavitation Stimulation Technology

#### Feature

- Pure physical method solves conventional issue such as strong water sensitive layer, thin and poor layer and adjacent water layer; and deals with issues relating to secondary and tertiary production; The circular construction has no reservoir damage, and the process is simple, safe and environmentally friendly
- ✓ Deep stimulation : treatment radius up to 150 m
- ✓ Omni-directional: 360° radial action around wellbore
- ✓ High accuracy: affected reservoir Thickness 1.5 to 2.0m

#### Case

✓ Bohai oilfield, Liaohe oilfield, Daqing oilfield, Dagang oilfield, Shengli oilfield

#### **Application Results**

- ✓ permeability enhancement of high porosity and high permeability shale & Sand interlayer in Bohai oilfield. oil production increased from 9.6t/d to 17.5t/d, and oil production is increased by 2100 m<sup>3</sup>, high input-output ratio
- Low porosity and low permeability water flooded thick layer upper part fine stimulation in Liaohe Oilfield. After the measures, it produces 2t/d liquid and 0.2t/d oil, and has a stable water production of 1.6-2.2t/d, and 521 tons of oil increase
- thin and poor layer water injection well stimulation (middle porosity and low permeability sandstone) in Daqing oilfield, water injection volume is more than 12m<sup>3</sup>, corresponding oil increase is 2.5T per day. Till now, 1380 tons of oil has been added, and the validity period is 552 days



Fluid Cavitation Stimulation Technology

#### The production curve of Daqing oilfield



## Characteristic Service-Reservior Geology Research TechnologyANTON 安東

#### **Technical Features**

- Fine interpretation of structure and restoration of paleogeomorphology
- ✓ Fine reservoir description and fine characterization
- ✓ Natural fracture prediction
- Geo-mechanics research, one and three dimensional, geomechanically modeling for wells

#### Case

- Integrated productivity scheme of reservoir geology and engineering in Shengli Oilfield.
- High quality reservoir evaluation and development target optimization in \* tight oil block.

#### **Application Results**

- Based on reservoir geology research, it provides technical support for the whole process of drilling, fracturing and production.
- ✓ Main controlling factors analyze; accurately hit the sweet spot.





Construct fine interpretation - 3D diagrams

Analysis of palaeogeomorphology





Channel distribution map of sand Formation in Shaximiao 8



### A paragon of efficient and harmonious

### development between human and environment

Help others succeed...

www.antonoil.com