Brief Introduction of Gas Seal Detection Technology

01	I. Overview
02	II. Necessity of Gas Seal Detection
03	III. Technical Principle of Gas Seal Detection
04	IV. Application of Gas Seal Detection in China

I. Overview

ANTON 安東

In the process of natural gas production in oil and gas fields, annular channeling pressure in gas wells has always been a difficult problem threatening wellbore safety. The use of gas seal to buckle oil and casing can theoretically eliminate this risk, but the results of field application are not ideal.

Statistics show that the leakage of threaded connection between oil and casing string is the main cause of annulus pressure.

Since 2008, China's oil and gas fields have applied gas seal detection technology, which has fundamentally changed the production situation of wellbore annulus under pressure.

01	I. Overview
02	II. Necessity of Gas Seal Detection
03	III. Technical Principle of Gas Seal Detection
04	IV. Application of Gas Seal Detection in China

ANTON 安東

Main Causes of Leakage of Gas Seal Connection of Oil Pipe and Casing

③ Material selection conditions are limited.

Main Causes of Leakage of Gas Seal Connection of Oil Pipe and Casing

④ Knock before screwing on (transportation, mounting of drilling floor, make-up thread) (5) Severe service conditions (cleanning of threads and sealing surfaces, standard makeup torque)

Main Causes of Leakage of Gas Seal Connection of Oil Pipe and Casing

The influencing factors exist randomly and cannot be completely excluded, so the leaking thread will exist randomly. Gas seal detection technology can effectively eliminate leaked threads when oil pipe and casing are put into the well.

Gas seal detection technology becomes the "final judge" before oil pip and casing are put into the well.

01	I. Overview
02	II. Necessity of Gas Seal Detection
03	III. Technical Principle of Gas Seal Detection
04	IV. Application of Gas Seal Detection in China

1. Principle of Detection Method—Helium Leak Detection Method

 In 1970, helium leak detection technology was first applied to gas tightness test of oil jacket in the world.
 Helium molecule diameter is small, it is easy to permeate along the microgap channel, and can predict leakage in time;

③ Helium is an inert gas, which is nontoxic to human beings, harmless and not corrosive to metal pipes, safe and clean.

1. Principle of Detection Method—Helium Leak Detection Method

Permeability of different media(78°F(25.5°C), compared with helium)

Gas	Hydrog en	Helium	Water Vapor	Neon Nitrogei		Air	Argon
Molecular Weight	2	4	18	10	28	29	40
Permeability of Molecular Flow	1.41	1	0.47	0.45	0.37	0.37	0.32

Minimum Leakage Rate of Sealing Test Method(bar·mL/s), Quantitative comparison						
Water pressure drop method	1×10 ⁻²	315000 bar∙mL/Year				
Air pressure drop method	1×10 ⁻³	31500 bar∙mL/Year				
Soapy Water bubble method	1×10 ⁻⁴	3150 bar∙mL/Year				
Gas seal detection method	1×10 ⁻⁷	3.15 bar∙mL/Year				

2. Principle of Detection Technology

2. Principle of Detection Technology

On the operation well platform, after the threaded connection of the two oil pipes or is completed, the double casings seal detection tool is positioned up and down on the threads in the pipe body, and a sealed space is established by setting, high-pressure helium is injected into the sealed space, and a highsensitivity detector probe is used for detection outside the threads, and the helium leak will cause an alarm, indicating that the thread seal is unqualified.

东方智慧 全球分享

Oriental wisdom, Global sharing

Schematic Diagram of On-site Detection

3. Main Equipment

4. Service Scope

- It is suitable for various natural gas wells, gas injection wells, gas storage reservoirs and shale gas wells.
- It is suitable for all kinds of gas-tight buckle oil (casing) pipe, nipple, column in Φ
 60.3 mm ~ Φ 339.7 mm;
- It is suitable for various drilling machines, workover rigs, offshore platforms and other conditions.
- It is suitable for working environment in various harsh environments such as desert, mountain and ocean.

5. Characteristics of Gas Seal Detection Technology

- It can realize the gas tightness detection under 120MPa pressure and meet the requirements of high standards.
- The gas tightness is quantitatively described by the permeation rate of small molecular helium, and helium with a leakage rate of 10-7 bar mL/s is detected with high sensitivity within 0.7s, which is more accurate.
- It can simultaneously detect the factory end and the on-site connection end of the oil (casing) pipe coupling under the actual tension working condition, which is more real and reliable.
- The single-point detection time can reach 1.5min and the speed is fast.

01	I. Overview
02	II. Necessity of Gas Seal Detection
03	III. Technical Principle of Gas Seal Detection
04	IV. Application of Gas Seal Detection in China

IV. Application of Gas Seal Detection in China

Statistical Table of Threads for Gas Seal Detection in China

Detection Year	String Type	Detected Connection Type	Detection Pressure (MPa)	Total Detection Number	Number of Leakage	Leakage Ratio
2009		VAM-TOP; TP-CQ; BGC; 3SB; BEAR TP-FJ BGT2, etc	35-105	1563	66	4.22%
2010				10833	341	3.15%
2011				26028	517	1.99%
2012				51700	925	1.79%
2013	Casing			55309	905	1.64%
2014				38382	709	1.85%
2015				17411	323	1.86%
2016				11053	229	2.07%
2017				11275	648	5.75%
Subtotal				223554	4663	2.09%
2009				17029	421	2.47%
2010		VAM-TOP; BGT; BEAR; NP110-VAM	35-110	24145	572	2.37%
2011				34335	811	2.36%
2012				45866	797	1.74%
2013	Oil Pipe			53971	1128	2.09%
2014		TP-G2		36388	675	1.86%
2015		FOX, etc.		26974	518	1.92%
2016				20091	396	1.97%
2017				13089	261	1.99%
Subtotal				271888	5579	2.05%
Total				495442	10242	2.07%

IV. Application of Gas Seal Detection in China

Statistical Table for Detection of Casing and Tubing in a Gas Storage Depot

Detection Year	String Type	Detected Connection Type	Detection Pressure (MPa)	Total Detection Number	Number of Leakage	Leakage Ratio
2011				383	6	1.57%
2012		FJL TP-CQ TP-FJ VAM-TOP VAMFJL篓	32-64	698	15	2.15%
2013	Casing			3150	65	2.06%
2014	(63 Well Time)			1004	30	2.99%
2015	, , ,			311	11	3.54%
2016				830	28	3.37%
Total				6376	155	2.43%
2012				477	10	2.09%
2013		BGT1 VAM-TOP	20-47	1415	28	1.98%
2014	Oil Pipe (15 Well Time)			476	10	2.10%
2015				540	27	5.00%
2016				416	10	2.40%
2017				235	5	2.13%
Total				3559	90	2.53%

THANKS!

Helping others succeed...

www.antonoil.com