ANTON 安東

ANTON 安東

Contents

01	R&D Center And Mud Plant Introduction
02	Drilling Fluid System
03	Drilling and Completion Fluid Chemical
	_
04	Important Accomplishment

The R&D Center mainly engage:

- > System Research
- Production Quality Control
- > Technical Support

1.2 Mud Plant

ANTON 安東

Our company have abundant mud plant construction and management experience.

1200m³ Mud Plant in BaiCheng Xinjiang

ANTON 安東

Contents

01	R&D Center And Mud Plant Introduction	
02	Drilling Fluid System	
03	Drilling and Completion Fluid Chemical	
04	Important Accomplishment	

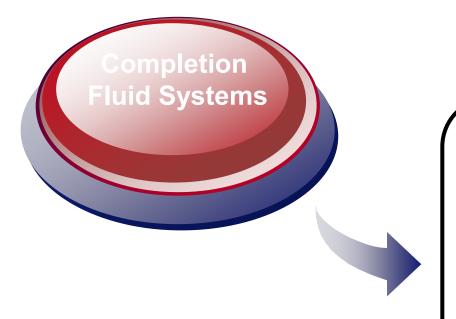
2. Drilling Fluid Systems

ANTON 安東

Water Base System

- KCL/FOAMER^{AT}
- ORG-DRILL^{AT}
- LATI-SPRING^{AT}
- **Extreme Flow**
- **Polyamine**
- Saturated salt brine system

Drilling Fluid Systems


LAVA-FLOWAT

Synthesis Base System

- **Ant-Druid**
- **Mixed Polyolefin**

2. Drilling Fluid Systems

ANTON 安東

Completion Fluid

- Inorganic salt system
- Organic salt system

2.1 KCL/FOAMER^{AT}

ANTON 安東

Advantages

2.1 KCL/FOAMER^{AT}

Parameters

Parameter	Value
Density (g/cm³)	1.20 ~ 1.80
FV (s)	40 ~ 90
YP (Pa)	5~12
PV (mPa.s)	10 ~ 25
GEL (10'/10"Pa)	2 ~ 3/3 ~ 10
API FL (ml)	< 5
MBT (g/L)	35 ~ 50
PH	9~10
KCL concentration (%V)	5~7

Major material: PAC\XCD\KPAM\SMC\SPNH\SMP\FT-1A\KCL\AT-former etc.

2.1 KCL/FOAMERAT

Range of application

Temperature range: <150°C

Temperature Formation Usable Range Density Reservoir

Especially suitable for large footage clay and shale stone formation, easy caving and balling formation

Density range:1.2~1.8g/cm³

Fractured clay and shale stone, siltstone and easily loss formation

2.2 ORGDRILLAT

Advantages

Low corrosive and great reservoir protection capability

Anti water sensitive mudstone and salt gym contaminate

Anti calcium and magnesium pollution

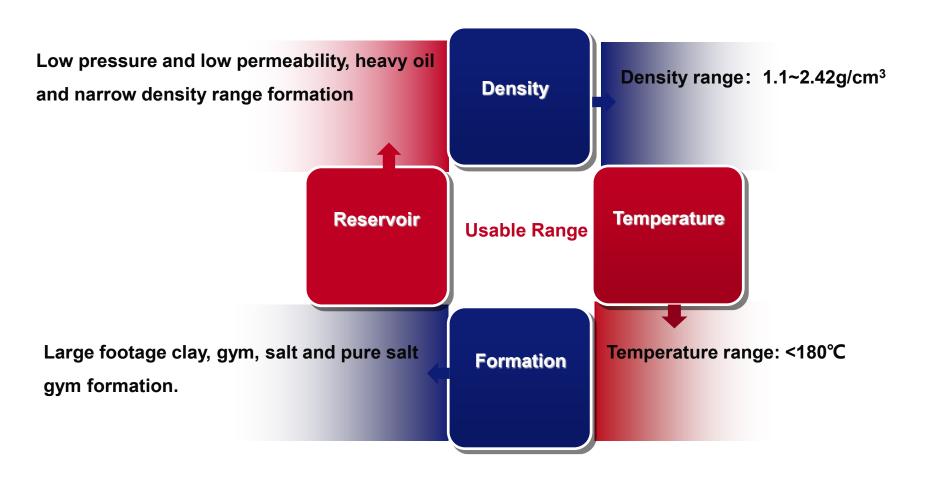
Great shear thinning and carrying capacity

Widely Applicability

ORGDRILLAT

2.2 ORGDRILLAT

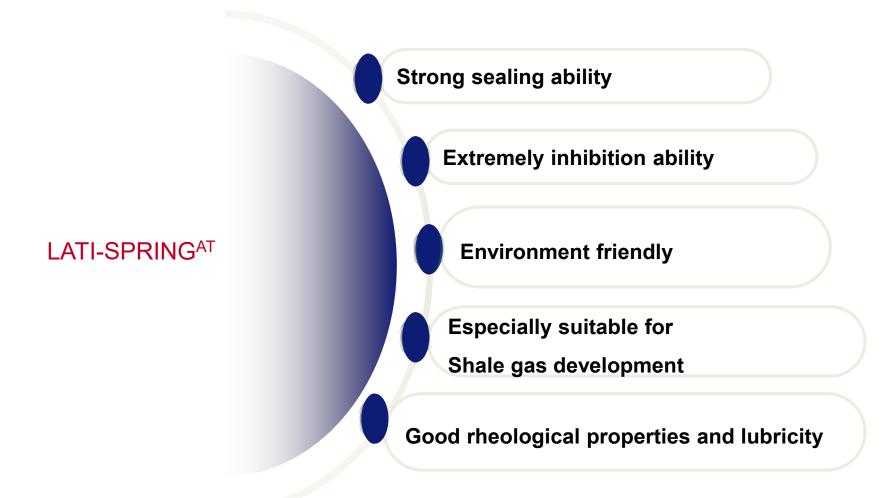
Parameters


Parameter	Value
Density (g/cm3)	1.10 ~ 2.42
YP (Pa)	4.5 ~ 16.5
PV (mPa.s)	17 ~ 60
GEL (10'/10"Pa)	2 ~ 5/3 ~ 8
API FL (ml)	< 5
HTHP FL (ml)	< 15

Major material: AT-W2\AT-W3\AT-W4\XCD\AT-Redul1\AT-Redulsh\AT-Viscol\AT-PGCS\AT-NTF\AT-ZDY etc..

2.2 ORGDRILLAT

ANTON 安東

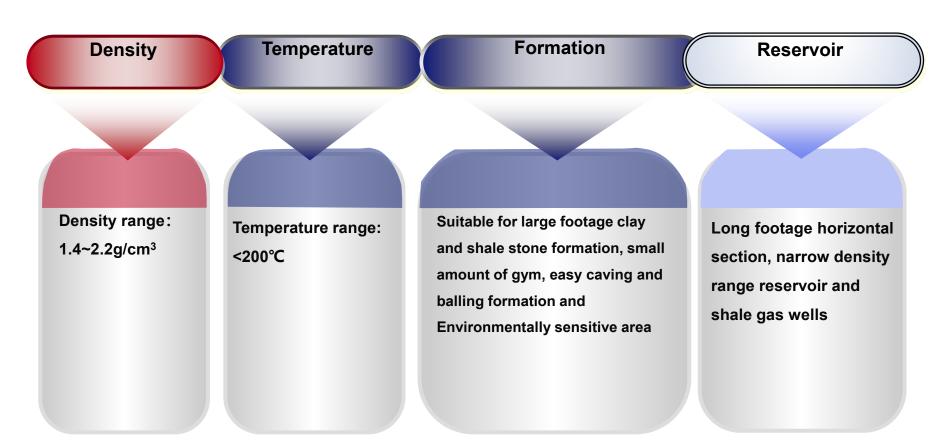

Range of application

2.3 LATI-SPRINGAT

Advantages

2.3 LATISPRING^{AT}

Parameters


Parameter	Value
Density (g/cm³)	1.4 ~ 2.2
PV (mpa.s)	40 ~ 90
YP(Pa)	6~16
Φ_6/Φ_3	5~10/3~8
G ₁₀ ″ / ₁₀ ′(Pa/Pa)	3 ~ 8/5 ~ 15
API,mL	≤3
HTHP, mL	≤5
PH	9~10.5
MBT	7 ~ 14
kf	0.0612 ~ 0.1673

Major material: AT-Poly\AT-thin\AT-Calovis\AT-Supreme\AT-Calosperse etc.

2.3 LATISPRINGAT

Range of application

2.4 Extreme Flow

Advantages

- Be stable up to 200°C, excellent high temperature stability and suspension capability
- Good performance in gypsum, formation salt water & cutting solid contamination

- Perfect rheological performance in high density and temperature
- Additives environment-friendly
- Simple mixing and maintenance in field service

2.4 Extreme Flow

Parameters

The performance parameters of different strata

Т	ρ	PV	ΥP	G10"/G10'	API	НТНР	рН	CI-
°C	g/cm3	Pa	Pa	Pa	mL	mL	1	mg/L(10 ⁴)
100-120	1.80-1.90	20-60	≥10	2-5/4-10	≤3	≤8	8.5-10	1
150-160	2.30-2.40	45-85	≥15	1-5/5-18	≤5	≤12	8.5-10	15-17
170-190	1.80-1.90	35-75	≥13	1-3/5-15	≤5	≤10	8.5-10	10-13

2.4 Extreme Flow

Range of application

High temperature & deep well, ultra-high density wells

Susceptible to salt, gypsum stratum pollution

A horizontal well with easily hydrated dispersed swelling and wellbore instability

Environmental sensitive and environmental demanding areas

2.5 Polyamine MS

ANTON 安東

Advantages

Great rheology, lubricity and filtration capability

Great inhibition and plugging capability

Polyamine/ Polyol

Agents no toxicity and friendly to environment

Great reservoir protection capability

Simple on-site preparation and maintenance

2.5 Polyamine MS

Parameters

Parameter	Value
Density (g/cm³)	1.05 ~ 1.50
PV (mPa.s)	10~30
YP (Pa)	5~15
GEL (10'/10"Pa)	2 ~ 4/4 ~ 10
API FL (ml)	< 5
HTHP FL (ml)	< 12
EC50(mg/L)	60000

Major material: AT-HP\AT-Redulsh\AT-JDFAT-Viscol\AT-PGCS\AT-POLYAMINE\FORMATE etc..

2.5 Polyamine MS

Range of application

Temperature range: <150°C

Density range: 1.05~1.50g/cm³

Easily hydrated dispersed swelling and wellbore instability formation

Environmentally sensitive and strictly demanding areas

2.6 Ant-Druid^{AT}

ANTON 安東

Advantages

Inartificial vegetable oil, Non aromatic hydrocarbon, biodegradation can reach 84% in 28 days

Excellent shear characteristics, keep wellbore hole clean

Ant-Druid

Corrosion to rubber parts is small, prolong the use of downhole tools

High flash and burning point, safety for transportation and storage

Drilling cuttings have been identified as general industrial solid wastes by national authority

2.6 Ant-Druid^{AT}

Parameters

Parameter	Value
Density (g/cm³)	1.10 ~ 2.45
YP (Pa)	4~15
PV (mPa.s)	17 ~ 70
GEL (10'/10"Pa)	2 ~ 5/5 ~ 10
HTHP FL (ml)	< 6.0
ES	> 600

Major material: ATMUL-HT\ATCOAT-HT\ATGEL\ATTROL-HT etc.

2.6 Ant-Druid^{AT}

Range of application

2.7 Mixed Polyolefin

Advantages

Low aromatic hydrocarbon, easy biodegradation

Great rheology, lubricity and borehole stability capability

Mixed Polyolefin

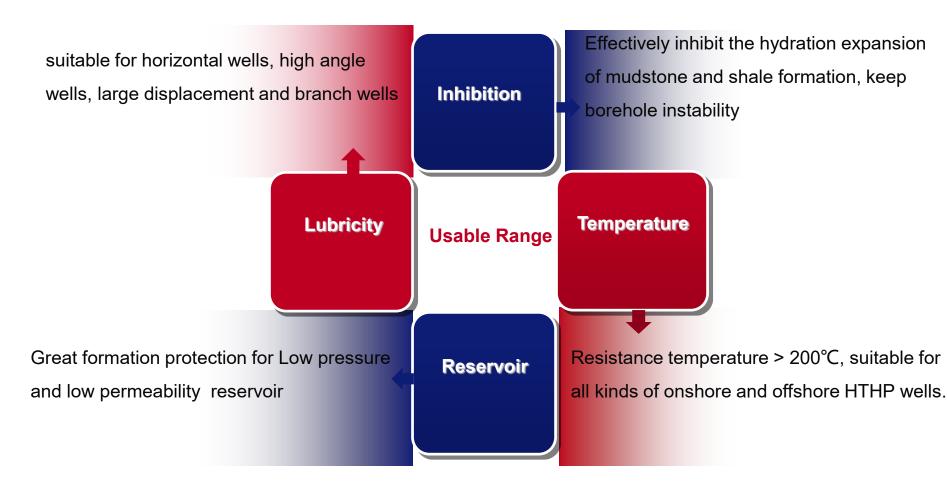
Corrosion to rubber parts is low

Great reservoir protection capability

Resistance temperature > 200°C

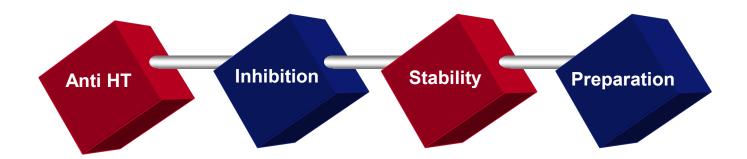
2.7 Mixed Polyolefin

Parameters


Parameter	Value
Density (g/cm³)	1.05 ~ 2.30
YP (Pa)	5~15
PV (mPa.s)	15 ~ 65
GEL (10'/10"Pa)	2 ~ 5/3 ~ 10
HTHP FL (ml)	< 10
ES	> 600

Major material: ATMUL-HT\ATCOAT-HT\ATGEL\ATTROL-HT etc.

2.7 Mixed Polyolefin


Range of application

2.8 LAVA FLOWAT

ANTON 安東

Advantages

Good thermal stability and temperature tolerance 200°C

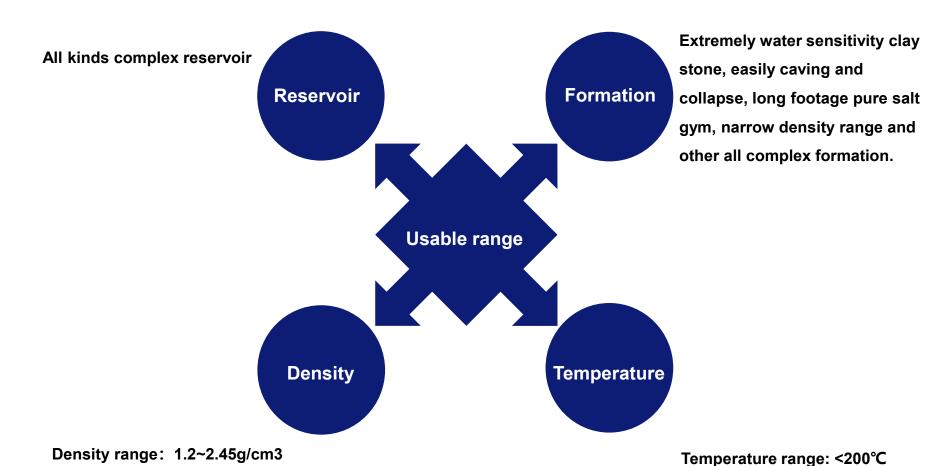
Non active water
phase and
applicable to all
kinds of complex
formation

Better emulsifying stability, Strong anti mud stone and salt water pollution ability

Simple type of treatment agent, easily change and maintain

2.8 LAVA FLOWAT

Parameters


Parameter	Value
Density (g/cm³)	1.20 ~ 2.45
YP (Pa)	10 ~ 25
PV (mPa.s)	≤75
GEL (Pa)	2 ~ 5/5 ~ 10
ES (V)	≥600V
HTHP FL (ml)	≤6.0

Major material: ATMUL-HT\ATCOAT-HT\ATGEL\ATTROL-HT etc.

2.8 LAVA FLOWAT

Range of application

东方智慧 全球分享 Oriental wisdom, Global sharing

ANTON 安東

Contents

01	R&D Center And Mud Plant Introduction	
02	Drilling Fluid System	
03	Drilling and Completion Fluid Chemical	
04	Important Accomplishment	

3.1 Conventional chemical

Water Base Drilling fluid chemical

NO.	Chemical name	Function
1	НР	Flocculating Agent
2	PL	Filtration Reducer
3	XCD	Viscosifier
4	PAC-LV	Filtration Reducer
5	PAC-HV	Viscosifier
6	EX-DRILL FL	Filtration Reducer
7	EX-DRILL HT	Filtration Reducer
8	EX-POLYSEAL	Anti-collapse
9	YLA	Lubricating anti sloughing agent
10	EX-FLOW	Filtration Reducer
11	EX-THIN	Viscosity reducer
12	AT- PEG	Anti-collapse
13	AT-NA	Plugging agent
14	AT-AP1	Inhibitor
15	AT - SLOP	Oil Soluble Plugging Agent
16	AT-RH4	Bit cleaner

3.1 Conventional chemical

Completion fluid chemical

NO.	Chemical name	Function	
1	ZnBr2	inorganic salt weighting agent	
2	CaBr2 inorganic salt weighting agent		
3	KCL	KCL inorganic salt weighting agent	
4	CaCl2	inorganic salt weighting agent	
5	AT-Bio	Bactericide	
6	AT-scavenger	Oxygen scavenger	
7	AT-ZH2	Anti-corrosive agent Viscosifier	
8	HEC		
9	Citric	PH conditioning agent	

LATI-SPRING^{AT} series

NO.	PRODRILL Series	Function	
1	AT-Poly	Flocculating Agent	
2	AT-thin	Thinner and Filtration Reducer	
3	AT-Calovis	Filtration Reducer	
4	AT-Supreme	Anti-collapse	
5	AT-Calosperse	Anti-collapse Agent	

LAVAFLOW^{AT} series

NO.	Oil Base Series Function		
1	ATMUL-HT	Primary Emulsion	
2	ATCOAT-HT	Second Emulsion	
3	ATROL	API Filtration Reducer	
4	ATROL-HT HTHP Filtration Reducer		
5	AT-WET	Wetting Agent	
6	AT-ONEMUL One Emulsion		
7	ATGEL-HT	Organophilic clay	

LCM Chemical

NO.	Loss Circulation Material Series
1	AT-LCM
2	AT-LCM2
3	AT-LCM3
4	QDL-1
5	SDF-3
6	AT-GSD

ANTON 安東

Introduction of AT-LCM Series

AT-LCM1

AT-LCM2

AT-LCM3

ANTON 安東

Contents

01	R&D Center And Mud Plant Introduction
02	Drilling Fluid System
03	Drilling and Completion Fluid Chemical
	_
04	Important Accomplishment

4.Important Accomplishment

Application of Lava Flow^{AT} in KESHEN Block of TARIM Oilfield

■ Block Profile

The geological development of this block, the depth of oil and gas burial, the large salt-paste layer, and the ultra-high temperature and pressure at the bottom of the well are all difficult problems in the international scope. The maximum depth: 8038m, the maximum bottom temperature: $180\ ^{\circ}\text{C}$;

□ Performances

- √ 80 Wells have been successfully constructed
- ✓ The maximum density: 2.85g/cm³
- ✓ Effectively solve the problem of high density and high temperature high pressure block
- ✓ The application effect of oil-based mud is remarkable.

4.Important Accomplishment

> ANT-Druids Biosynthetic Base Drilling Fluid System

■ Well Profile

Depth (m)	Horizontal length (m)	Dev. (°)	MW (g/cm³)	Footage (m)	Bottom temperature(°C)
4730	1500	89	1.90	3151	110

□ Performances

- ✓ The successful implementation of "one trip" of the trial wells, the footage is 2318 meters;
- ✓ Periodic drilling cycle is only 16 days;
- ✓ The horizontal length of 1500 meters, the average ROP of 9.74 meters / hour, the drilling time is 9.1 days, refresh the average record of ROP and drilling cycle for horizontal interval on shale gas project in Sichuan oil and gas field;
- ✓ Single well drilling cycle 56 days, refresh the single well drilling cycle record.

4.Important Accomplishment

> Application of Multicomponent Synergistic Drilling Fluid System

□ Block Profile

- ✓ In Jurassic and Triassic strata, mud lost (29%) and sticking (33%) are easy to occur;
- ✓ The total amount of clay minerals in Jurassic sangonghe formation and Triassic strata is up to 55%, and the rolling recovery rate of fresh water is only 15.12%. The formation has strong hydration and dispersion characteristics, which is easy to cause wellbore instability.

□ Performances

- ✓ The highest rolling recovery rate was 94.6 %. The maximum linear expansion rate was
 13.46% at 16h. The system effectively improved the hydration dispersion and
 expansion of mud shale, and ensured the stability of wellbore wall;
- ✓ The plugging agent formula (4#) has wide adaptability to cracks, and can seal 1~3mm cracks and bear pressure of 7MPa.
- ✓ The complex time rate decreased to 1.3%, the average loss per well decreased by 154m³, and the loss per well treatment time decreased by 62.6h.

ANTON 安東

THANKS!

Helping others succeed...